Category: From the Field

A Bevy of Breakthroughs: The Robbins Jobsite Roundup Featuring 6 Epic Projects

Dozens of Robbins TBMs are normally in operation at any given time in countries around the world, but this month’s breakthrough extravaganza is exceptional. No less than six breakthroughs occurred during April 2019, and more are on the way. We take a look at these epic completions in pictures below.

Galerie des Janots, France

On April 3, 2019, a Robbins 3.5 m diameter Main Beam TBM broke through into open space, completing its 2.8 km long water tunnel. It was not the first time the machine had encountered open space: twice during tunneling, the machine hit uncharted caverns, the largest of which measured a staggering 8,000 cubic meters in size.

Galerie des Janots Robbins TBM breakthrough

Contractor Eiffage Civil Construction celebrates the April 3 breakthrough of the Robbins TBM in Cassis, France.

Galerie des Janots Robbins TBM makes breakthrough

The Robbins TBM achieved rates of up to 25 m per day despite incredibly difficult geology including powdery clays and karstic limestone.

GKI, Austria

On April 8, 2019, the first of two 6.5 m diameter Robbins Double Shield TBMs completed its bore for Austria’s Gemeinschaftskraftwerk Inn (GKI) project. A second Double Shield TBM will break through later this year. The 22 km long headrace tunnel near the alpine town of Pfunds was bored under high cover (maximum of 1,200 m) in schist rock.

GKI Robbins Double Shield at launch

The first of two Robbins Double Shield TBMs, seen at launch, broke through on April 8.

DigIndy Tunnel System, USA

On April 10, 2019, a Robbins TBM completed the White River and Lower Pogues Run Tunnels, part of the DigIndy project in Indianapolis, Indiana, USA. The 36-year-old, refurbished 6.2 m diameter Robbins Main Beam machine was launched in 2013 in Indianapolis, and has done exceedingly well. Multiple world records in the 6 to 7 m diameter range were broken on the job, including “Most Feet Mined in One Day” (124.9 m), “Most Feet Mined in One Week” (515.1 m), and “Most Feet Mined in One Month” (1,754 m). Over the course of the project the TBM will bore more than 40 km of tunnels.

The Robbins Main Beam TBM at DigIndy, USA

The Robbins Main Beam TBM completed two drives, the White River and Lower Pogues Run Tunnels, as part of the DigIndy Tunnel System.

Bheri Babai Diversion Multipurpose Project, Nepal

On April 16, 2019, the Prime Minister of Nepal and other government officials, contractor COVEC and Robbins gathered to celebrate the breakthrough of the first ever TBM in Nepal. The machine holed through months ahead of schedule after excavating in excess of 1,000 m per month.

The Bheri Babai Robbins Double Shield TBM breakthrough in Nepal

The Robbins 5.09 m diameter Double Shield TBM bored through sandstone and mudstone, completing the 12.2 km long drive in 18 months.

Mumbai Metro Line 3, India

On April 18, 2019, the first of two 6.65 m Robbins Crossover XRE TBMs made its first intermediate breakthrough at the Mumbai Metro Line 3. The TBM completed its 1.2 km long tunnel drive from Cuffe Parade to Vidhan Bhawan station, and will now be readied for its second section on the 2.8 km lot.

Mumbai Metro XRE TBM breakthrough

Contractor Larsen & Toubro-Shanghai Tunnel Engineering Co Joint Venture (L&T-STEC JV) celebrates the breakthrough of the Crossover XRE with Robbins personnel on April 18. Video and Photos: Nagarjuna R. Musikara, Robbins Field Service.

 

Los Condores HEPP, Chile

On April 25, 2019, a 4.56 m Robbins Double Shield TBM completed tunneling a 12 km intake tunnel for the Los Condores HEPP in Region del Maule, Chile. Contractor Ferrovial Agroman overcame challenging mixed face conditions and high water inflows to break through into an underground chamber. A second machine—a 4.56 m  Crossover XRE TBM—will be launched to bore another section of tunnel later this year.

Los Condores Robbins Double Shield TBM

The Robbins Double Shield TBM, seen here during the launch, completed its 12 km intake tunnel on April 25.


Namaste Nepal: How I Learned to Live with Less and Appreciate Tunnels More

In Nepal, the greeting ‘Namaste’, while pressing both palms together in front of the chest, signifies both ‘hello’ and ‘goodbye’. It implies a circular concept of time that I rather like—I certainly think I will be coming back to this country of high mountains, valley forests, and yes, tunnels.

The Adventure Begins

When I first learned that I would be visiting Nepal to see a swift-moving tunnel project making an impact in a local community, I was pretty jazzed. I also took it upon myself to overpack. The Bheri Babai Diversion Multipurpose Project (or BBDMP for short) is a 12 km long tunnel that travels below protected forest considered part of the Bardia National Wildlife Reserve. This is an area home to tigers, rhinos, Asian elephants, leopards, and more. And, most worryingly for me, mosquitoes.

The BBDMP portal. Note the trees: perfect mosquito territory.

Mosquitoes love me. I’m not entirely sure why they love me so much, but let’s just say that if there’s a mosquito within a 2 km radius it will find me. Thus, I decided to be prudent and go all out when packing. I purchased a whole new set of safari clothes, the most potent bug spray I could find in copious amounts, and much, much more. I stuffed everything into two suitcases and set off on my journey.

A full 24 hours of traveling later (the journey from Seattle, USA to Kathmandu is no joke, folks), and I arrived in the Kathmandu airport…with no checked luggage. Through a gross miscalculation (what a way to learn a lesson!) I also had not packed hardly anything in my carry-on bag. I had no clothing with me, and more importantly, no bug spray. What was I to do?

Rolling with It

After discovering that my bags were several days away, I decided to forego any hope of reuniting with them during my trip. Instead, I rolled with it. After a one-hour local flight from Kathmandu to Nepalgunj, we arrived at our destination. Nepalgunj is a frenetic, dusty town located around 8 km from the Indian border and one hour from the BBDMP site. The culture is heavily influenced by India, and we had many meals of delicious spicy curry and fried bread. The streets were lined with small shops and marketplace stalls, but to my dismay, no department stores.

The crowded marketplace in Nepalgunj.

After a quick Google search my coworkers and our guests with us for the site visit headed to the nearest approximation, known as Rani Mart (Rani means ‘queen’ in Hindi). To my surprise, I purchased a whole new wardrobe and everything I needed for 1/10th of the price I would have paid for it in the U.S. (though the sizing on the tags was quite a bit larger!) I was feeling very pleased with myself.

We took pictures with the local kids next to the BBDMP site. I’m the one rocking the green plaid shirt—the latest fashion from Rani Mart.

A Little Perspective

The next day we were ready to visit the jobsite. I couldn’t help but notice the rolling blackouts that plagued the city and the vast stretches of farmland requiring huge water resources. The people in the surrounding area make do with limited resources in ingenious ways—I was intrigued to see, for example, that every outlet requires you to flip an on-switch before the current becomes available. Perhaps we Americans could save significant energy if we made a setup like this a national standard.  Local hotels, including one we stayed at, use solar panels for their power and air conditioning, and harvest rain water in order to reduce their usage.

All of this made me realize how much the BBDMP will impact the surrounding areas. This was confirmed in a meeting we had with Nepal’s Department of Irrigation (DOI), the project’s contractor China Overseas Engineering Group Co. Ltd. (COVEC), and consultant Geodata. The tunnel is sourcing water from the Bheri River to the Babai River, traveling through mountainous Himalayan geology known as the Siwalik Range. The water, as the project’s name suggests, is for multiple purposes. The estimated annual benefit in Nepalese Rupees is $2.9 billion for irrigation, and $4.3 billion for hydropower, making a total of $7.2 billion in benefits once the project becomes active.

The completed tunnel will irrigate 51,000 Ha of land and provide 48 MW annual generating capacity. That’s not to mention the environmental benefits: The Babai River currently swells each monsoon season and then runs extremely low in drier seasons. It is connected directly to the groundwater table, which is being aggressively depleted. With a regulated flow during all seasons, the groundwater table will see less depletion year-round.

We crossed the Babai River on the way to the jobsite, seen here at low water levels.

The impact, in other words, is huge. Learning all of this made my obsession with my missing luggage seem inconsequential in comparison. I had my bug spray and some clothes. That was all I needed.

The First Nepalese TBM

With such a landmark project for the region, its proponents were willing to look to the latest technology during the planning phase. Our local representatives, MOSH Tunnelling, had been working since the 1990’s to bring a TBM to Nepal, a country known for its Drill & Blast tunneling. While TBMs had been considered multiple times, each time conventional tunneling had been chosen.

When the BBDMP was fast-tracked as one of the country’s “National Pride Projects” feasibility studies showed that Drill & Blast excavation could take as long as 12 years. The DOI needed a faster option, and they found it in TBMs. They began working with MOSH Tunnelling and Robbins to bring what would be the first Nepalese TBM ever into the country—a 5.06 m diameter Robbins Double Shield. The process for the DOI to acquire funding for the project and select a contractor through international competitive bidding took seven years, spanning from 2007 to 2015, when project commencement officially began.

Fast forward to our site visit in November 2018 and the project is far exceeding expectations. Tunneling has topped out at 1,202 m in one month with an average of around 740 m per month. The knowledgeable COVEC team have traversed a major fault zone, the Bheri Thrust, with no problems, and overcome a stuck TBM shield with a bypass tunnel constructed in just five days. Overall, the TBM is far ahead of schedule and the results are of national importance.

The tunnel is lined with hexagonal segments for rapid excavation.

The local community, national media, and government are all watching how the TBM excavation plays out at BBDMP. Given the strong performance, they are now considering TBMs for a host of future multipurpose water projects. It’s the kind of result that opens up a whole new marketplace.

Into the Forest

After a great site visit, we chose to relax for one day at a spectacular local lodge that offered jeep safaris into the Bardia Wildlife Reserve. Currently home to nearly 90 tigers (a number that is rapidly increasing through conservation efforts) we were hopeful of perhaps seeing one of the striped cats in the forest. Our guide was knowledgeable, our jeep sturdy and our driver adept as we traversed bumpy roads and forded a few streams on our safari drive. We saw mischievous macaques, tree-dwelling langurs, a host of brightly colored birds, and various deer. We saw several enticing tiger prints…but the tiger itself remained elusive. Obviously, this means that I must go back!

Over the river and through the woods…

…past mischievous macaques waiting for food from tourists…

…we spotted our one and only tiger for the day.

A Lesson Learned

After traversing a tunnel, traipsing through the forest, and some swift sight-seeing in Kathmandu on our last day, I felt I had come full circle. I was ready to head home, but with an eye towards future opportunities to return to Nepal, whether for business or vacation. I will be back. But next time, you can rest assured, I will only bring what I can fit in my carry-on.


Fueled by Vietnamese Coffee: My Epic Adventure at Thuong Kon Tum

Traveling in the tunneling industry is basically a regular commute for some. A lot of us don’t think twice about the destination, we just do it with a mission in mind. My mission as Robbins Marketing Manager was this: a small conference in Ho Chi Minh City. Okay, easy! As the date approached, about a month before, I kept hearing about how well our Main Beam TBM was doing in Vietnam, at the Thuong Kon Tum Hydroelectric project, despite a gauntlet of challenges. I talked to some project engineers and field service personnel who told me it was in a remote location in Kon Tum Province. And then I heard more about traveling to that site: a 6-hour drive from Da Nang, through nauseating windy, narrow roads, climbing elevations with no speed limits to speak of. But that’s cool, I thought, glad I don’t have to go on that ride.

“Wait, why not just go to the jobsite for a video and photo shoot? We can have it ready for the breakthrough in October,” says Desiree Willis, Robbins PR manager a couple weeks later. What!? A few days after that, it was all planned. Ron, our videographer, Ken, our photographer, and Keri Lin, our marketing manager from Robbins China, set off with me on a last-minute adventure. The 17.4 km long Thuong Kon Tum HEPP tunnel will be the country’s longest once complete. A 4.5 m diameter Robbins Main Beam TBM and continuous conveyor system were supplied to bore a section of the tunnel.

A terraced rice paddy with a beautiful mountain backdrop, so typical of what is synonymous with the sights of Vietnam.

Maybe because I was bracing myself for the worst as far as the drive goes, I didn’t feel like it was that bad. The scenery was jaw dropping with lush jungle, rice paddies and scenic villages, and so many distractions on the sides of the road that I just completely avoided looking ahead. Problem solved! The coolest distractions were the scooters driving on these mountain roads: what they were carrying, how many people were on them, their driving technique. My favorite site was seeing a whole family of people—a 5-year old kid in the front, the dad driving, the mom in the back and a toddler sandwiched in between the parents—on a run-down 125 cc scooter. Then there’s the animals: a litter of stray dogs, adorable black piglets making road crossings that almost made me swear off bacon, herds of cows, goats, etc.

This was about a half hour away from the jobsite in Kon Tum province. The picture doesn’t truly depict how beautiful it was in person.

But how the heck did they get the machine, assembled by Onsite First Time Assembly (OFTA), to the site? Apparently, the previous contractor built portions of the roadway to the jobsite while components were staged at the port site. Several bridges, previously built only for light traffic with scooters and carts, were rebuilt or reinforced in order to carry the heavy TBM components. In a road conditions survey report by logistics firm SDV Vietnam Company Ltd., the original bridges were described as “having no shoulder”, and as having “blind corners and sharp curves”.  The OFTA process allows a TBM to be assembled on location, saving time and money in terms of shipping costs and project schedule. The machine had successfully made it to the site, as it had launched in 2012.

Not pictured: the litters of stray dogs and chickens roaming around the jobsite. Oddly enough, I never saw any stray cats here.

Upon arriving at the jobsite, I was immediately impressed with the site and the surroundings, especially after hearing about all of the challenges the project had back when the TBM was launched, under a different contractor. The TBM launched into complex rocky conditions that turned out to be quite different than in the original geological study. The machine sat abandoned 2.6 km into the tunnel with equipment sitting idle for months, waiting for a change in circumstances. In 2015, Robbins signed a contract with the project’s new contractor CC47 to supply full refurbishment and to operate the equipment with a full Field Service team. Since then, Robbins Field Service has generally been kicking butt.

We hiked up a mountain to get this panoramic shot of the project site. I think it was worth it!

The machine was running as expected, so filming interviews and the machine went smoothly. I learned a lot from the interviews, mainly from the Robbins guys we interviewed—PN Madhan, Robbins Engineering Geologist, and Greg Adams, Robbins Field Service Manager. “It’s a workhorse of a machine and still in great condition, considering all of the difficult ground it’s been through,” Greg mentioned. Massive granitic rock wasn’t the only challenge they faced—the team also endured a handful of major fault zones requiring rock bolting and the use of the McNally Roof Support System, as well as some huge water inflows.

Water inflows were up to 600 liters per second—that’s nearly enough to fill an Olympic-sized swimming pool every hour!

Greg did warn our photographer and videographer that they were going to face heat with extremely high humidity. When John McNally, Robbins Field Service Manager-Asia, took over the project site, he managed refurbishment of much of the equipment inside the tunnel along with the camp’s living quarters. This included adding a ventilation tube, keeping the tunnel at a cool 34°C. That’s the temperature AFTER installing the ventilation. Read more about the challenges here.

While waiting for dinner, I got posing tips from Keri Lin and our photographer for my next career as an Instagram model. A refreshing beverage and the typical Vietnamese farmer hat were absolutely necessary for the scorching hot day at the site.

The crew at the camp quarters, and the jobsite in general, were very welcoming. Greg and Taylor Hwang, Robbins project manager, arranged for a special dinner just for us on the first night—steak and French fries, an American staple! The crew on site mainly consists of English-speaking expats, Chinese, Thai, Vietnamese, Indian and Philippine guys, so the cuisine varied every day. We hung around that night for a while, listening to stories from some of the field service crew. This is while we were fawning over the pet falcon that one of the field service guys owned. I think the falcon liked living there, because his string wasn’t even tied to the perch at one point. Taylor told us that there were some families and children of the crew living there, who had to find ways to pass the time in this little remote village. He even told us they had pet monkeys at one point. I peeked into a living quarter and saw a drum set made with those Danish butter cookie tins that you get at Christmas. That’s one way to pass the time! Before we were about to leave, some of the Thai people at the site had brought in a bucket with a cover over it. I was curious and went to take a peek, because they started adding salt to the buckets. It was about 30 river snakes (possibly river eels, but they called them snakes) writhing violently because of the sodium touching their skin. Then they started preparing them one-by-one, sticking a nail into their heads and gutting them. It was quite mesmerizing, really.

The camp’s pet falcon.

 

Not sure if this is the regional cuisine but the snakes were caught at a river close by the camp.

We only had two full days of shooting video and photos. Before the 6-hour drive back to Danang, all of us got caffeine-drunk on two strong Vietnamese coffees served with condensed milk each. I suspect it’s the perfect combination of the tenaciously strong espresso dripped into a puddle of pure sugar syrup (condensed milk) that singlehandedly causes adult ADHD from the first sip. During the drive down (which was much worse, I didn’t realize how much elevation we climbed going up), we were already reminiscing about the stories and experiences shared at the jobsite. When talking to the field service crew, they were all excited for the coming breakthrough later this year, but it seemed they were just a bit melancholy too. They were at this site for years, in a tiny remote village in the mountains of Vietnam, building friendships and routines. With only a handful of meters left to go on the tunnel, they’ll soon be off to the different parts of the world where they came from. I’m fortunate to have experienced everything I did on this trip and can’t wait to come back to this beautiful country.

(From left): Ron (videographer), me, Greg Adams (Field Service Manager), Keri Lin (Marketing Manager for Robbins China), and Ken (Photographer) at the end of the shoot.


What's Going On? A Worldwide Roundup of Robbins Jobsites

At any given time, Robbins TBMs are operating at dozens of jobsites around the world.  Our dedicated Field Service personnel take video and pictures of the TBM progress often, so we’ve decided to offer a periodic roundup of what’s going on in a picture-based blog–from assembly of a massive Slurry TBM in Japan, to machine assembly for India’s Mumbai Metro to extremely hard rock encountered in Vietnam. Read on to found out the latest.

MEGA TBM ASSEMBLY IN HIROSHIMA, JAPAN

Onsite First Time Assembly (OFTA) of a 13.67 m (44.8 ft) diameter Robbins Slurry TBM is underway for Hiroshima, Japan’s Expressway Line 5 project. The geology of the 1.4 km (0.9 mi) long tunnel is predicted to include maximum 190 MPa (28,000 psi) UCS granite with high water pressure of up to 13 bar.  The Robbins Field Service crew is nearing assembly completion and will begin testing of the equipment in August.

Hiroshima Slurry TBM

A full view of the 13.67 m (44.8 ft) Robbins Slurry TBM for the Hiroshima Expressway Line 5. Photo: Mario Recena Areces

SIMULTANEOUS BUILDS FOR MUMBAI METRO

Mumbai, India’s massive Metro Line 3 project requires multiple TBMs on various contracts.  A total of four Robbins TBMs will bore on two separate contracts–two 6.65 m (21.8 ft) Crossover (XRE) TBMs for contract UGC-01, and two 6.65 m (21.8 ft) Slurry TBMs for contract UGC-03.  Assembly of the first Crossover TBM and the first Slurry TBM on each contract are occurring simultaneously, and are being overseen by our experienced Field Service crews.

Mumbai Metro XRE Assembly

Crews position a section of the first of two Crossover (XRE) TBMs for the Mumbai Metro Line 3. Photo: Colin Ferguson

 

Assembly of Slurry TBM for Mumbai Metro

Crews assemble a Slurry TBM for the Mumbai Metro Line 3, and inspect the cutterhead. Photo: Colin Ferguson

EXTREME HARD ROCK IN VIETNAM

Robbins Field Service crews operating the Main Beam TBM at Vietnam’s Thuong Kon Tum HEPP have encountered granitic rock exceeding 300 MPa UCS and high water inflows.  Despite the challenges the tunnel is more than 85% complete.

Granitic Rock Face

Robbins Engineering Geologist for Field Service, PN Madhan, inspects the massive granitic rock ahead of the TBM at Vietnam’s Thuong Kon Tum HEPP.

 

AN EPIC PROJECT IN MEXICO

With one of three Robbins lots completed at Mexico City’s massive 62 km (39 mi) Emisor Oriente tunnel, Field Service efforts are focused on completing Lots 4 and 5 in difficult mixed ground conditions.  The customized EPB TBMs are boring through some of the most challenging conditions in the world, from abrasive basalt to watery clays and boulders.

Field Service at Emisor Oriente

Alfredo Garrido Baena is part of the dedicated Field Service crew focusing efforts on completing Lots 4 and 5 in challenging conditions at Mexico City’s Emisor Oriente tunnel.

 

A JOB WELL DONE IN ALBANIA

TBM assembly and breakthrough is often discussed, but disassembly can be just as complicated. Following the recent breakthrough of the Crossover (XRE) TBM in Albania (the first machine of its kind in Europe) for the Moglicë  Headrace Tunnel, Field Service crews are working to disassemble the machine in an underground launch chamber.

TBM Disassembly in Devoll, Albania

Crews separate the cutterhead of the Crossover TBM in an underground chamber in Devoll, Albania. Photo: Andy Birch

 

Devoll, Albania disassembly, forward shield

The forward shield is turned during disassembly of the TBM, which broke through in May of this year. Photo: Andy Birch

 


Rescuing and Refurbishing TBMs: Experiences at Bangalore’s Namma Metro

In this blog, Robbins and guest blogger Barrie Willis, Manager Tunneling & Civil for iPS, share their experiences rebuilding and relaunching TBMs in the field.

TBM maintenance: it’s one of the most important factors predicting project success, but it is often glossed over.  Experience shows, however, that maintenance plays just as much a part in the excavation rates as the proper TBM design. Regular maintenance can keep future rebuild costs low and keep equipment efficiency high while maximizing advance rates.

Conversely, a lack of maintenance, improper operation, and/or severe ground conditions can result in undue wear and slow advance rates. In a worst case scenario, it can even require rescuing and refurbishing a TBM. Such a case occurred at Bangalore, India’s Namma Metro, where several TBMs required recovery and refurbishment after operating in abrasive ground. Teams from both Robbins and iPS were called in to evaluate and rescue TBMs on separate sections of the tunnel.

The Robbins Experience

Two European-manufactured EPB TBMs “Krishna” and “Kaveri” were launched from the South Ramp station at the Namma Metro project in October and November of 2012, and were slated to bore three sections of metro tunnel each, totaling 1,550 m. While the first 400 m long drive from South Ramp to City Market station went well, the TBMs encountered severe ground conditions on the second, 432 m long drive from City Market to Chickpet Station.

Robbins refurbished the two EPBs but did not change any of the machine design features.

Difficult Conditions

The drives took 12 and 22 months, respectively, and were hampered by a mixed face comprising hard granite and soil with high groundwater levels. Tunneling took place near fragile, historic building foundations in some cases hundreds of years old. The TBMs in this section encountered large boulders as well as reinforced blocks of concrete that seriously damaged the TBM cutterheads. These challenges required regular cutterhead interventions but at the same time there was an inability to grout unstable areas from the surface due to congested residential areas.

It was at this point that the contractor, along with owner Bangalore Metro Rail Corporation Ltd. (BMRCL), approached Robbins and asked them to take over the operations of the TBMs—the critical path tunnels needed to be brought back up to speed. The last 750 m drive between Chickpet and Majestic stations was all that stood in the way of opening a substantial section of Namma Metro’s Phase 1.

Robbins Signs On

After obtaining agreement from the project owner and the contractor, Robbins took over the responsibility for all aspects of the underground operations. A team of over 60 staff including TBM operators, TBM technicians, ring builders, a grouting team, and others began work. Robbins was also responsible for running surface installations and equipment such as the grout batching plant, gantry cranes and power supply. The contractor provided a team of people including surveyors, QC engineers, and loco operators who reported directly to the Robbins site management team.

Robbins Field Service guided the refurbishment and assembly of the two competitor-manufactured EPBs.

The Robbins crew carried out refurbishment of the two TBMs, keeping the designs of the machines in tact while installing Robbins cutting tools in both cutterheads. In particular TBM “Krishna” underwent 112 days of repairs and testing. The refurbishment, and subsequent assembly and launch of the two machines, was carried out even as the Chickpet station was being constructed in order to mitigate any further delays. The two TBMs were re-launched in 2015 on their last drive—in March for TBM “Kaveri” and in December for TBM “Krishna”.

Challenging Ground Continues

Difficult conditions were encountered during the bore: the initial 160 meters of the drive was found to consist of residual soil, gradually transitioning into a mixed face of soil and highly weathered granite over the following 100 m. The mixed face conditions then gave way to a full face of fresh granite in the last 50 meters of boring.

The zones of transition were particularly difficult, with soil occasionally falling in due to the vibrations during tunneling.  The conditions also made it impossible to maintain hyperbaric air pressure during cutterhead interventions. This problem was overcome by pumping a weak-mix grout solution into the ground surrounding the TBM. The solution permeated into existing voids and effectively prevented air from percolating through to the surface. A period of approximately 36 hours was initially required for curing of the grout solution. However, on-site trials with various additives enabled the standing time to be reduced to 12 hours.

Robbins and crews celebrate the breakthrough of TBM “Kaveri”.

A Resounding Success

Despite the challenges, the TBMs were able to achieve advance rates of 50 mm per minute in highly weathered rock and 22 mm per minute in sections of competent hard rock. TBM “Kaveri” completed its final breakthrough in June 2016. The second TBM “Krishna” had the advantage of known geology and completed its excavation in about nine months on September 28, 2016.

The iPS Experience

When the TBM emerged from the rescue shaft most cutters and grill bars were worn away.

On another section of the recently completed Namma Metro, iPS rescued and refurbished a stuck TBM from another European manufacturer, and then operated it for owner Bangalore Metro Rail Corporation (BMRC) alongside the project’s original contractor.

Initial Inspection

iPS found severe wear—the cutterhead was essentially bare, and the cutters, disc boxes, cutter mountings and grill bars had been worn away. On inspection a serious crack in the screw conveyor was found and the flights had been severely worn. The TBM had been operating for 12 months and had bored 300 m of abrasive ground with insufficiently thorough maintenance. Geology consisted of weathered granite with a high quartz and feldspar content, 130 MPa UCS, and was often mixed with softer soils. It came to a standstill below the main railway lines at a major Bangalore metro station.

iPS crews had to rebuild the machine inside the tunnel.

Rebuild & Recovery Plan

iPS was able to build an intermediate shaft and refurbish the TBM to the point that it could advance into that shaft for further rebuild work including a replacement cutterhead. But the rebuild work itself was not easy—sourcing parts in India was a challenge, with smaller parts being brought in from Germany and other countries. A new cutterhead was shipped to the site by air freight. Crews dismantled the TBM to inspect and repair the screw conveyor, hydraulic system, PLC, and main drive. The TBM was relaunched in August 2015.

A Second Chance

Once the TBM had started up again, iPS then trained the crew on the importance of maintenance and inspections. They went over cutterhead interventions, what to look for, and how to prevent significant damage.

The cutterhead shown was shipped to the site by air freight, as sourcing parts was a challenge.

The training and TBM rebuild were a success—despite continued abrasive geology and mixed face conditions the machine completed the remaining 630 m of its drive in seven months. Frequent interventions were undertaken to maintain and inspect the machine. Breakthrough occurred on April 19, 2016.

Key Takeaways

Like any piece of machinery, it is essential to consider the total life cycle and to take steps to maximize the efficiency and life of the equipment through good operation and maintenance. Contractors should work with equipment suppliers to learn of the maintenance that is required—both scheduled and in response to changing geology.

When a project begins, err on the side of caution: do too many inspections, more than you think are necessary, to get a feel for how the machine reacts in different geologies. Geological surveys are extremely important, but they don’t always reveal every feature, so in the event the machine encounters unexpected geology, even more inspections will be necessary than normal. Above all, avoid complacency: just because a TBM is a large steel machine with a metal cutterhead and cutters doesn’t mean that nothing can damage it.

The proof is in the multitude of successful projects around the world: TBMs can and have shown their ability to excavate projects at world-class rates of advance even in very difficult conditions. With proper maintenance and operation, a TBM can last over many kilometers of tunnel and years of use.


What's Going On? A Quarterly Worldwide Jobsite Roundup

At any given time, Robbins TBMs are operating at dozens of jobsites around the world.  Our dedicated Field Service personnel take video and pictures of the TBM progress often, so we’ve decided to offer a quarterly roundup of what’s going on in picture and video format–from deep TBM assembly in New York, USA to an epic TBM launch in the Himalayan mountains of Nepal. Read on to found out the latest.

TBM Assembly in a Deep Shaft in New York, USA

A 6.8 m (22.3 ft) Robbins Single Shield TBM, designed for water pressures up to 20 bar, is undergoing assembly and testing at the Delaware Aqueduct Repair Project. The TBM will be launched from a starter tunnel at the bottom of a 274 m (900 ft) deep shaft.

TBM Assembly at the Delaware Aqueduct Repair in Newburgh, New York, USA. The shaft is an incredible 274 m (900 ft) deep.

TBM Assembly Time Lapse

Epic TBM Launch in the Himalayan Mountains

In the Siwalik Range of the southern Himalayan Mountains of Nepal, a 5.06 m (16.6 ft) Robbins Double Shield embarked to bore the Bheri Babai Diversion Multipurpose Project (BBDMP). The TBM launched on October 14. See the drone footage taken by our own Field Service TBM Mechanic Thomas Fuchs:

Launch of the Robbins Double Shield at Nepal’s BBDMP on October 14.

Crossover Machine Startup in Akron, Ohio

On October 19, a Robbins 9.26 m (30.4 ft) diameter Crossover (XRE) TBM launched below Akron, Ohio, USA to bore the OCIT tunnel. The machine is excavating in soft soils that will transition into mixed face and then full face shale.  Before its launch, personnel at the jobsite filmed the cutterhead testing in a unique way. Watch the video below for more:

A worker surveys the TBM prior to its launch on the Akron OCIT October 19.


Salamanders, Pseudo Scorpions, and Quartz Crystals: How my Recent Site Visit proved that TBM Tunneling is the Greenest Way to Go

View from the bottom of a deep shaft at the Jollyville Transmission Main.

The Balcones Canyonlands just north of Austin, Texas, USA is a protected wildlife preserve, and it’s not open to the public.  So when the city of Austin opted to build a 10.5 km (6.5 mi) long water line directly below it, there was understandably some concern—but not for humans. The inhabitants of the Canyonlands include some of the state’s most endangered species, from tiny, blind cave spiders to songbirds to the green-speckled Jollyville Plateau Salamander.  And don’t forget the pseudo scorpions.   The Jollyville Transmission Main, a pipeline planned to bring drinking water to the drought-ridden city, was designed deep below protected aquifers in chalk, up to 106 m (350 ft) down in limestone rock.  This made tunneling the only option.  But even so, how could the project avoid impacting such a sensitive environment?

When I visited the site in Autumn 2012, I got my answer. The contractor, Southland/Mole JV, is taking every precaution to mitigate impact, and they’ve been very successful thus far.  An environmental consultant from the city is on the site daily, and routine inspections ensure that the minimally invasive tunnel is not encroaching on the habitat of the endangered animals.

Our guides for the visit, Kent Vest and John Arciszewski of Southland Contracting, took us to the 82 m (270 ft) deep Four Points Shaft first, which has been partially reinforced with liner plates.  Kent and John explained that during excavation, water inflow from the aquifer had been high enough that the city opted to grout behind the liner plates to prevent further dewatering.  Gravel in the annular space between the liner plates and shaft walls would keep any groundwater pathways intact.

As we descended into the unlined tunnel where a 3.25 m (10.7 ft) Robbins Main Beam TBM was averaging 55 m (180 ft) per day, we talked ground support—or the lack thereof.  Three TBMs are being used to excavate portions of the tunnel in competent limestone.  Southland is not permitted to do either pre-excavation drilling or grouting because of the possibility of karst cavities and groundwater pathways—areas where endangered aquatic species might live.  While they plan to install wire mesh and rock bolts if it’s needed, the rock quality has so far been very good with little ground water.  We took a few photos while in this tunnel (see below), and then moved on to the next site.

The Southland crew in the tunnel.

The unlined tunnel.

Our last site visit of the day was the deepest—the 106 m (350 ft) Jollyville shaft next to the similarly named Jollyville Reservoir in a much more urban location.   Once we’d been lowered down the shaft, we found a small, unlined tunnel in competent limestone.  A 3.0 m (9.8 ft), contractor-owned Double Shield TBM was tunneling this reach, after having been refurbished by Robbins in Solon, Ohio.  Similarly, the machine was getting some fast advance rates of 46 m (150 ft) per day on average.

The TBM operator in the small tunnel sits next to the machine conveyor.

What I immediately noticed in this tunnel was the multitude of small, mostly dry karst cavities down the tunnel walls.  These cavities could potentially be home to the blind cave spiders, though none had been found during tunneling and it was likely they wouldn’t live in such small voids.  We noticed, during our ride on the muck train towards the machine, sparks of light emitting from these cavities.  Once we stopped John reached into a cavity and pulled out a handful of quartz crystals.  “These are all over, in all these cavities.  You can take some with you,” he said.  As I am part-pirate (my genealogy traces back to Sir Francis Drake on my mother’s side!), I decided to stuff my pockets with the sparkly crystals (i.e., treasure!).  I had never seen anything like this before, but John explained that the minerals in the perched water in many of the pockets caused the crystals to grow.  Since the pockets were small, they weren’t filled in or isolated and we could pluck quartz crystals to our heart’s content.

Shining a light on the tiny cavities.

Quartz crystals!

On a more serious note, Southland does have a plan of action if large cavities are found or if a groundwater pathway is very open and linked to the aquifer.  In this case, large voids would be isolated and sealed off to protect the habitat within.  If ground water inflows are severe they will install steel liner plates and grout behind them to stop the flow.  But, says Southland, they don’t expect to encounter either of these since the tunnels are so far below the aquifer.  In fact, one reach of the tunnel, already complete at the time of our visit, had encountered almost no groundwater in 1,300 m (4,400 ft) of tunneling.

Once back on the surface, it became clear to me that this well-designed project proved that tunneling, particularly TBM tunneling, could be used safely in even the most sensitive environments.  The foresight, planning, and execution by the designers and contractors was impressive.  The salamanders and pseudo scorpions thank you.


There are Urgent Projects…and Then There’s Emisor Oriente

After visiting Mexico City’s Emisor Oriente Wastewater Tunnel, I realized something: there are urgent projects, and then there are URGENT PROJECTS.  Túnel Emisor Oriente, often abbreviated to TEO by those involved, is the latter.  We visited the site in 2011 to see the assembly of an EPB and learn about why the project is so important.

Day 1

On a good day with light traffic, the jobsite is about an hour’s drive away from the Distrito Federal, the downtown zone of Mexico’s capital city.  Our first day, I noticed how the high rise buildings and restaurants slowly dissolved into ramshackle huts as we drove further from the city to an area known as Ecatepec.  Approaching the site, we crossed a bridge in our SUV that spanned an extremely slow moving grayish brown river (more about this soon).

The Gran Canal

The “river” flowing outside Mexico City.

It was a warm day in June, Mexico’s rainy season, which is quite different from the rain in my home town of Seattle in the U.S.  Each day during the rainy season, the morning dawns sunny and warm–but by 4:00 in the afternoon a torrential downpour begins.  The water floods city streets throughout Mexico City, whose storm drains can’t handle the sudden inundation.  Sometimes the rain only lasts a few minutes, and sometimes it goes for longer.  The water eventually runs into rivers like the one we crossed by the jobsite, creating flooding risks.

We exited our SUV at the Lot 1 shaft and were greeted by several Robbins Field Service guys, including our Field Service Manager for the Americas, Jeremy Pinkham.  I was excited to learn more about the TEO project, where we have three EPB machines among six TBMs that are excavating an epic 62 km (39 mi) long wastewater tunnel. The tunnel will feed into the country’s largest water treatment plant, which is currently being built.

Emisor Oriente Site

The morning of the first day, at the Lot 1 Emisor Oriente site.

As Jeremy and the group walked towards the shaft to be lowered down the elevator, I was struck by a smell—something akin to a vast field of poorly maintained port-a-potties.  I asked Jeremy about the Robbins machine, which was originally intended for Lot 5 but had been fast tracked to bore part of the tunnel section at Lot 1.  I was wondering why this particular section had been deemed top priority.  “Did you see that river just a few meters away from our jobsite?” he asked. “Most rivers, when you throw a stone in, it splashes or skips and then sinks.  This one, you throw a stone in and it just goes ‘plop’, then sits there.”  It was only then that I realized that this “river” was El Gran Canal, Mexico City’s infamous open sewer originally commissioned in 1910 by President Porfirio Díaz.

The Robbins guys as well as engineers from the Lot 1 contractor Ingenieros Civiles Asociados (ICA) then explained to me that the canal in this section, lined with shacks, was prone to flooding during each rainy season due to a loss of its slope.  The effects on the people and infrastructure were severe, so the National Water Commission (CONAGUA) had fast-tracked Lot 1.  A pumping station would be put in and the first section of tunnel sealed off so that wastewater from this area could be pumped into a section of the canal downstream that still maintained its negative slope.  I was beginning to realize the importance and urgency of this project!

The guys gave us a tour of the TBM being assembled at the bottom of the shaft, which was specially designed for high pressure conditions under the water table.

Deep shaft at Lot 1

Looking up from the bottom of the Lot 1 shaft where the Robbins machine was being assembled.

Robbins crew on the EPB at Lot 1

Robbins employees on the Lot 1 EPB. From left to right: Andrei Olivares, Robbins Project Engineer; Jeremy Pinkham, Field Service Manager – The Americas; Roberto Gonzalez, General Manager, Robbins Mexico

On the ride home that day we were hit by a particularly nasty rainstorm that went on for several hours.  I learned via the local news later on that the very roads we had driven on to get to the jobsite were now flooded with wastewater and impassable—apparently a regular yet extremely concerning event.

Day 2

The next day we went to CONAGUA’s offices to speak with José Miguel Guevara, General Supply Coordinator for Potable Water and Sanitation.  He spoke with us about the massive scope of Emisor Oriente—a project that could improve the lives of over 20 million people in the area by increasing wastewater capacity by 20% during each rainy season. The new pipeline will bolster current wastewater lines (both El Gran Canal and Emisor Central—a pipeline built in 1964) that have lost their slope due to Mexico City’s sinking lake clays.

Sr. Guevara (right) in the CONAGUA office

Roland Herr, editor of Tunnel magazine (left) talks with Sr. Guevara (right) in the CONAGUA office.

While Guevara was optimistic, he admitted that health problems caused by El Gran Canal were numerous for the people living on its banks.  When asked about future plans, he expressed grave concern that funds were not currently sufficient for a covered option to the open waterway.  “At this moment,” said Guevara, “The Valley of Mexico is vulnerable.  Our new treatment plant will treat 60% of the area’s water, but we need more alternatives as well.  We are working on pieces to the problem, but the problem is not solved yet.”

With Emisor Oriente scheduled to be complete in 2014, I am hopeful that at least some of those problems will be alleviated.  This is a great example of the magnitude that civil engineering works have on societies.  I for one am proud that Robbins has a part in this monumental solution to an age old problem.After visiting Mexico City’s Emisor Oriente Wastewater Tunnel, I realized something: there are urgent projects, and then there are URGENT PROJECTS.  Túnel Emisor Oriente, often abbreviated to TEO by those involved, is the latter.

Day 1

On a good day with light traffic, the jobsite is about an hour’s drive away from the Distrito Federal, the downtown zone of Mexico’s capital city.  Our first day, I noticed how the high rise buildings and restaurants slowly dissolved into ramshackle huts as we drove further from the city to an area known as Ecatepec.  Approaching the site, we crossed a bridge in our SUV that spanned an extremely slow moving grayish brown river (more about this soon).

The Gran Canal

The “river” flowing outside Mexico City.

It was a warm day in June, Mexico’s rainy season, which is quite different from the rain in my home town of Seattle in the U.S.  Each day during the rainy season, the morning dawns sunny and warm–but by 4:00 in the afternoon a torrential downpour begins.  The water floods city streets throughout Mexico City, whose storm drains can’t handle the sudden inundation.  Sometimes the rain only lasts a few minutes, and sometimes it goes for longer.  The water eventually runs into rivers like the one we crossed by the jobsite, creating flooding risks.

We exited our SUV at the Lot 1 shaft and were greeted by several Robbins Field Service guys, including our Field Service Manager for the Americas, Jeremy Pinkham.  I was excited to learn more about the TEO project, where we have three EPB machines among six TBMs that are excavating an epic 62 km (39 mi) long wastewater tunnel. The tunnel will feed into the country’s largest water treatment plant, which is currently being built.

Emisor Oriente Site

The morning of the first day, at the Lot 1 Emisor Oriente site.

As Jeremy and the group walked towards the shaft to be lowered down the elevator, I was struck by a smell—something akin to a vast field of poorly maintained port-a-potties.  I asked Jeremy about the Robbins machine, which was originally intended for Lot 5 but had been fast tracked to bore part of the tunnel section at Lot 1.  I was wondering why this particular section had been deemed top priority.  “Did you see that river just a few meters away from our jobsite?” he asked. “Most rivers, when you throw a stone in, it splashes or skips and then sinks.  This one, you throw a stone in and it just goes ‘plop’, then sits there.”  It was only then that I realized that this “river” was El Gran Canal, Mexico City’s infamous open sewer originally commissioned in 1910 by President Porfirio Díaz.

The Robbins guys as well as engineers from the Lot 1 contractor Ingenieros Civiles Asociados (ICA) then explained to me that the canal in this section, lined with shacks, was prone to flooding during each rainy season due to a loss of its slope.  The effects on the people and infrastructure were severe, so the National Water Commission (CONAGUA) had fast-tracked Lot 1.  A pumping station would be put in and the first section of tunnel sealed off so that wastewater from this area could be pumped into a section of the canal downstream that still maintained its negative slope.  I was beginning to realize the importance and urgency of this project!

The guys gave us a tour of the TBM being assembled at the bottom of the shaft, which was specially designed for high pressure conditions under the water table.

Deep shaft at Lot 1

Looking up from the bottom of the Lot 1 shaft where the Robbins machine was being assembled.

Robbins crew on the EPB at Lot 1

Robbins employees on the Lot 1 EPB. From left to right: Andrei Olivares, Robbins Project Engineer; Jeremy Pinkham, Field Service Manager – The Americas; Roberto Gonzalez, General Manager, Robbins Mexico

On the ride home that day we were hit by a particularly nasty rainstorm that went on for several hours.  I learned via the local news later on that the very roads we had driven on to get to the jobsite were now flooded with wastewater and impassable—apparently a regular yet extremely concerning event.

Day 2

The next day we went to CONAGUA’s offices to speak with José Miguel Guevara, General Supply Coordinator for Potable Water and Sanitation.  He spoke with us about the massive scope of Emisor Oriente—a project that could improve the lives of over 20 million people in the area by increasing wastewater capacity by 20% during each rainy season. The new pipeline will bolster current wastewater lines (both El Gran Canal and Emisor Central—a pipeline built in 1964) that have lost their slope due to Mexico City’s sinking lake clays.

Sr. Guevara (right) in the CONAGUA office

Roland Herr, editor of Tunnel magazine (left) talks with Sr. Guevara (right) in the CONAGUA office.

While Guevara was optimistic, he admitted that health problems caused by El Gran Canal were numerous for the people living on its banks.  When asked about future plans, he expressed grave concern that funds were not currently sufficient for a covered option to the open waterway.  “At this moment,” said Guevara, “The Valley of Mexico is vulnerable.  Our new treatment plant will treat 60% of the area’s water, but we need more alternatives as well.  We are working on pieces to the problem, but the problem is not solved yet.”

With Emisor Oriente scheduled to be complete in 2014, I am hopeful that at least some of those problems will be alleviated.  This is a great example of the magnitude that civil engineering works have on societies.  I for one am proud to have a part in discussing this monumental solution to an age old problem.


Adventure at West Qinling:Treacherous Roads, Spicy Food, and TBMs

A few months ago one of my colleagues and yours truly presented a two day seminar to the Dongah Geological Company of South Korea on Robbins Hard Rock TBMs. The following is our story of the ensuing trip:  Fueled by copious amounts of South Korean hospitality known as Soju (for those of you who don’t know Soju or Shōchū is a Japanese distilled beverage. It is usually distilled from barley, sweet potatoes, or rice. Typically, shōchū contains 25% alcohol by volume.  It’s weaker than whiskey or standard-strength vodka but stronger than wine and sake. It does actually taste like weak vodka, at least the first one or two do, after that…well you should get the picture!) our agent Mr. Kim in South Korea suggested that we should further develop our relationship with our hosts and provide some on-site practical training for our hosts.

We needed to find a project that would be similar to the potential project in South Korea–similar meaning, similar in purpose, design and diameter. The machines in South Korea we learned could be up to 12m in diameter and possibly larger. Someone, I am not sure who, volunteered the West Qinling project in Gansu Province, China as the project most similar to the ones in South Korea.

Robbins currently has two 10m diameter hard rock main beam type machines in operation there. With the Soju in full effect we all thought this was a great idea and it was decided that West Qinling would be our next port of call. (For more on this project, view our news release and case study).

After a day or two of recovery and not expecting to hear anything more (Soju has that affect on you) there followed a flurry of E-mails, a few phone calls and before you knew it we had arranged a trip to the West Qinling project.

Gansu province is located in the northwest of the People’s Republic of China. It lies between the Tibetan and Huangtu plateaus. The landscape in Gansu is very mountainous in the South and flat in the North. The mountains in the South are part of the Qilian mountain range. At 5,547 meters high, Qilian Shan Mountain is Gansu’s highest elevation. The West Qinling Project is located in the mountainous region to the South. Similar to the great expedition in 1845, it’s only about 500km (310miles) from Chengdu to the jobsite.

I have been to the West Qinling site before; there is no way to get there other than by a four wheel drive vehicle. You have to drive; the nearest airport was severely damaged by the deadly 7.8 earthquake in the region in 2008. On a good day the drive could take 8 hours. Generally it takes at least 10 hours. On my first trip it took over 13 hours. If it rains you can expect landslides and mudslides, it has taken some field service personnel nearly two days to get off the mountain and back to Chengdu. In a weak attempt to dissuade Mr. Kim from actually going ahead with the visit to the jobsite, we tried to paint as black a picture of the journey as we could. No matter what we told him he always replied “Guk-jung-ha-jee-ma!” which in Korean literally means “No worries!” or “Don’t worry!”  To which we replied, “But Mr. Kim are you aware that this is the rainy season?” And to that we got the same answer “Guk-jung-ha-jee-ma!”

The Mountain Road to West Qinling

Start of the mountain road to the West Qinling jobsite.

After meeting and greeting our party of seven guests, accompanied by Mr. Kim from South Korea, at Chengdu Airport on the evening of 12th May we held a briefing on the same evening about the journey and the schedule for the days ahead. Arrangements were made to meet in the hotel lobby the next morning. “Any questions?” I asked. “Guk-jung-ha-jee-ma!” was the now familiar reply.

8am Friday 13th May:

I thought I wasn’t superstitious, but setting off on Friday 13th on a 10-hour journey in the rain to a remote jobsite in the mountains gets you thinking a little. So with Mike (our field service training supervisor), Andy (the Robbins China project manager for the project) and myself in the lead vehicle we set off in convoy, 4 vehicles in total, for West Qinling. Four hours into the journey and lunchtime is approaching. As some of you will be aware meal times are sacred in China–the drivers are getting short tempered and need to stop. We’re driving through Sichuan province and we’re close to the last major town before we hit the mountains and dirt roads.

The majority of food in Sichuan is spicy. The locals love nothing more than Chilies of any and all kinds with their food. We stop at a local restaurant in Baolun, (this is one of the small number of places where you will see few, if any, American style fast food joints, a rarity in itself these days). Andy orders food and leaves instructions ‘not too spicy’ with our smiling waitress. It seems as though something got lost in translation and most of the food is spicy. There are a few newcomers in our group to this part of China and the last thing you need on a long road trip into the mountains is to be looking for restrooms. Even some of the more experienced travelers have been known to get caught out once or twice (myself included).

In the more remote parts of non-Westernized countries or parts of countries that have had limited exposure to Westerners or “lao wai” (foreigners in China) you shouldn’t expect Western style facilities either; a hole in the floor type convenience would be the norm…if you’re lucky.

We set off again after lunch, the first few hours are on black top. Although the road is winding up and over the first mountain range it’s a relatively smooth ride and the views are spectacular. We enter Gansu province around 3:30pm in the afternoon.

Relative to the food we’ve eaten and the roads we’re traveling on, the condition of the digestive system is, in weather related terms, (refer to the Beaufort Scale) around Force 7:  ‘High Wind, moderate gale, near gale.’”

Again for those of you who don’t know, The Beaufort Scale (pronounced bou–fart, need I say more) is an empirical measure for describing wind speed based mainly on observed sea conditions (on land it is categorized by the physical effects it has on vegetation and structures). Its full name is the Beaufort Wind Force Scale.

Not long after we’re on the dirt roads, top speed is roughly 20km/h (12mph) about an hour in we stop at a small village, where wind speed for some of the group has increased to force 8 (gale, fresh gale), and all of our guests need a pit stop. We find a ‘restroom’ in a small village, the wind dies down and we set off again.

We pass through an area that has just been cleared of a landslide (see photo below), which had closed the road for 2 days prior to us travelling. If the landslide had not been cleared we would have had a four hour 150km detour to endure.

Landslide area on the road

The landslide area on the way back down the mountain.

Unexpectedly the wind starts to increase again, Mike is feeling it the worst, without warning we (he) experiences Force 11 (Violent storm) – we need to stop immediately!

Luckily we’re not far off another camp about 2 hours from our destination. We pull in and Mike calms the storm. There’s a lot of curiosity when we arrive at this camp. It’s not often you see four vehicles in convoy travelling these roads. Add to this the fact that we’re all ‘lao wai’ and pretty soon we’re surrounded by curious onlookers. A bit of ‘Chinglish’ (Chinese English) with the crowd, they hand out cigarettes to those who want them, we have a laugh and joke (‘laugh and joke’ by the way is cockney rhyming slang (slang mainly used in London in the UK) for ‘smoke’, and head on up the mountain.

Continuing on the journey

On the road again!

We arrive at the camp at around 6:30pm, where we’re greeted by our host from MOR18, Mr Wang. Everyone is shown to their rooms.  We throw the bags in, wash up and head for a welcome dinner. We’re all weary after the long journey, a few beers take the edge off and the expedition team starts to relax.

Camp at W Qinling

The camp at the West Qinling project.

Saturday May 14th:

First day of training, we split up into two groups. Mike takes a group for some classroom study, Andy & I with the other group head into the tunnel. First of all we explain some general rules on safety and what to watch out for when we’re in the tunnel. “Any questions?” – same answer: “Guk-jung-ha-jee-ma!”

When we were on site the previous year we were there to assemble, test and commission the machines. Due to bad ground at the start of the tunnel we had to walk the machines some 2.5km from the portal to the starting point of the bored tunnel. Since then the machine we’re visiting has advanced another 4.5km. Average production on the machines is close to 500m per month. Considering the location and the logistical nightmare that this project is, this is an excellent achievement. By anyone’s standards 500m per month on a 10m main beam machine is good going.

These tunnels form part of a massive project that will eventually cut rail transportation times between two major cities in the region from 12 hours to roughly 4 hours.

View of the jobsite

View of the site from the camp.

It takes us an hour on the loco to get to the machine, along the way we see several slip forms that are used by the contractor to complete the final lining of the tunnel. There are two rail tracks all the way to the back of the machine. There are currently nine rail switches at roughly 500m distance throughout the tunnel, and we constantly switch from the left line to the right line as we progress towards the machine to prevent any hold ups to the works.

On this project excavation, preliminary ground support consisting of rock bolts, mesh, ring beams and shotcrete is done at the machine and the final lining using the slip forms is carried out simultaneously in both tunnels. The excavated material is transported out of the tunnel on a continuous conveyor also supplied and installed by us.

We spend the whole morning on the machine and our guests get to see a lot of activities being carried out, ask a lot of good questions and get a good feel for hard rock tunnel boring. We manage to get into the cutterhead and witness a cutter inspection. For most of our guests it is the first time they have seen a hard rock boring machine in action. In South Korea tunnels in hard rock have typically been excavated by drill and blast methods and metro tunnels have been excavated by EPB machines. I think everyone is taken aback by the sheer size of the machine, the heat and noise and the amount of activities being carried out in the tunnel.

We see first-hand the machine boring whilst the crew installs ring beams and mesh and drill for rock bolts. Behind us in the L2 zone shotcreting is ongoing.

Around 1pm we’re out of the tunnel. After a light lunch Mike and I swap teams and once again we head back into the machine with the second group. More questions, more explanations and all in all a productive educational day.

Ground support in the tunnel

Ring beams installed on the West Qinling machine.

We have two machines on this project that are boring parallel tunnels, we’ve been on the left side machine all day, due to the way the project is organized this is actually the right line machine. This machine is operated by MOR18, our other machine is operated by CRTG. We think it only proper that we visit both machines. Two different contractors, two different ways of working, it’s good for our guests to see & understand that there are many different ways to approach this kind of work.

Saturday evening we get invited to dinner by CRTG, Mr. Dai is our host and knows how to throw a good reception. The food is excellent: Mike and myself demolish a large plate of bull frogs (tastes and looks just like Chicken) our guests however don’t seem too fond of them. They are washed down with Mr. Dai’s special Baijiu. Baijiu is almost the Chinese version of Korean Soju but around 50% stronger. Literally translated Baijiu means ‘white liquor’. For the most part Baijiu is an acquired taste; it kind of percolates out of you for around 3 days after you’ve been drinking it. Mr Dai has a special Baijiu that contains herbs and spices that make it good for the health, or so they say (and who am I to argue). I don’t want to upset our host and join with him in several toasts to the health of our guests — there’s no need for translation this evening. Baijiu is a wonderful translation tool — it’s funny how we can all understand each other so well. Our guests reciprocate with several toasts of their own, we sleep well that night!

Sunday May 15th:

Sunday morning is spent looking around the jobsites as a group. We visit the segment plant (all segments are fabricated on site), the ring beam plant, the wire mesh plant, the cutter workshop and the three batching plants. Three batching plants are needed as the invert segments, the shotcrete and the final lining concrete all require different quantities of sand, cement and aggregates for each application.

The team at the MOR18 Camp

The Expedition team at the MOR18 Camp. (Mr. Kim, our Robbins Korea Agent on the LHS of the picture, Mike (back row) and myself on the right in the Hi-Vis workwear)

We take a look at the continuous conveyor installations and explain to our guests how it all works and ties in with the boring machine.

Sunday afternoon we visit the right side machine (left line), as they have just come off an 800m plus month. We think it’s a record for this size of machine, an outstanding performance.

Installing invert segments

Installing invert segments at West Qinling

Later on in the day we’re invited to a question and answer session by the contractors. Our guests get a lot of useful information from them as do we.

We get a weather report for the next few days, not so good, rain is forecast. We need to change plans and decide to make a run for it down the mountain before the rains start. Sunday evening we attend another excellent dinner, this time hosted by Mr. Wang of MOR18. Once again the Baijiu replaces our translators and we communicate in a common language. We need to be cautious though; wind is also forecast for the next morning especially after a large dinner. We don’t need a repeat of our inbound journey!

Monday May 16th

 

We cannot thank our hosts enough for their hospitality; we have been welcomed with open arms, a great experience for our guests. We set off down the mountain at 7am. Winds are Force 0 – Calm!!

Around 6pm we’re back in Chengdu. A bit of rest and recuperation is in order—a couple of hectic days & hard nights takes its toll on you.

Tuesday May 17th

 

We pay a visit to one of the workshops in Chengdu. We are currently assembling the 2nd machine for the Chengdu metro project there. It’s an EPB machine and is nearly completely assembled. The shop is impressive and our guests are very interested in the unit. They have a lot of experience with EPB machines and ask a lot of pertinent questions.

Later that morning we stop off at the jobsite and see the sister machine in the workshop being assembled in the pit at site. Most of the back-up is completed, the middle shield is standing up and the site crew are preparing for the arrival of the forward and tail shields.

Chengdu Metro machine assembly

Robbins Chengdu Metro EPB Machine – Middle Shield

Back-up at the jobsite

The back-up just behind the middle shield.

Monday afternoon is spent taking in all the information from the visit. We have a final question and answer session with our guests and arrange a farewell dinner.

Wednesday morning 5:30am, we put our guests on the bus for the airport. We made it back from the mountains safely and the expedition is over. Mike gets on a plane for the US, Andy flies back to Shanghai; I jump on the high speed train from Chengdu to Chongqing, we have two hard rock single shield machines to build there. The first is about a month away from completion…back to reality, we’re on a tight schedule and there’s work to be done. All of a sudden I get the familiar feeling of a Force 11 (violent storm) coming on, must be something I ate at the farewell dinner. Luckily I’m on the train, there is a decent restroom and the storm is over before we know it. Winds return to Force 0 – Calm!


The Oldest Robbins TBM still in Action? We visit a jobsite in Canada that may be using the World’s Ultimate Workhorse TBM

Launch of the veteran Robbins TBM in Toronto, Canada

Launch of the veteran Robbins TBM in Toronto, Canada. Photo Credit: McNally Construction Inc.

It’s a long-standing question in the world of tunneling: Which TBM has been operating the longest? What makes it so durable?

In May 2011, I visited the site of the Centennial Parkway Sanitary Sewer Tunnel in Hamilton, Ontario, Canada to find some answers.  The rock portion of the tunnel, located in the shale of the Niagara Escarpment, is being bored by a Robbins Main Beam TBM in operation since 1968.  The 2.7 m (8.8 ft) diameter machine was first used for a Hydroelectric Tunnel in Tasmania, and is now owned by McNally Construction, who has used it on multiple sewer tunnels in Toronto and Ottawa since 1972.

The original Main Beam TBM, manufactured by Robbins in 1968.

The original Main Beam TBM, manufactured by Robbins in 1968.

I arrived at the Centennial Parkway site on a sunny Friday afternoon along with Tunnels & Tunnelling North America editor Nicole Robinson, where we were greeted by McNally Project Sponsor Dave Bax and Field Technician Kenny Baxter.

After giving us some safety instructions, we were handed full rubber suits and boots.  “You’re going to need these,” said Kenny. “It’s muddy on the shaft floor, and the material is red.  It gets everywhere.”  A quick look around the jobsite confirmed his statement—red clay-like material caked nearly everything, from trailers to trucks to boots.

The red clay material being loaded in muck cars.

We climbed down a long ladder into the shaft, and were given a tour of the small diameter tunnel.  Kenny explained that the ring beams and wooden lagging installed at the tunnel entrance were due to the softer clay material encountered at that point.  The rest of the rock portion of tunnel was being supported with rock bolts and steel straps. “The shale material is being recycled to use as brick.  The clay was used by a local gun club for berms on their grounds.”

Single track muck cars rolled out as we walked out of the tunnel, carrying more heaps of reddish shale, before they were lifted by a crane and dumped on the surface.

From left to right: Mark Walker, Laborer; Kenny Baxter, Field Technician; Nicole Robinson, T&T N. America, at the tunnel entrance.

Bax and Kenny mentioned that daily maintenance shifts have helped keep the veteran machine in good working order.  Crews regularly check the 12-inch (304 mm) diameter disc cutters, and inspect the cutterhead and critical sub-systems. “We are not expecting a lot of wear.  Our estimated completion for this tunnel is about two months,” said Bax.  At the time of our Centennial visit, the TBM had advanced 200 m, at 1.8 to 2.1 m (6.0 to 7.0 ft) per hour, with no major issues.

The competent shale rock is certainly also a factor in limiting wear to the machine’s cutterhead and main bearing.  Robust core components, including the main beam and gripper system, are key in keeping a TBM running for a long time (43 years, in this case).

Overall, the machine looked to be well equipped for its latest tunnel drive, and though it is impossible to know if it’s the world’s oldest working Robbins machine, it is certainly on the list.  If you know of a Robbins machine that’s been operating longer, drop us a line in the comments section.  We’d be interested to hear about it, and maybe even visit it!